

 Smart Contract Audit Report

 1

John Wick Security Lab received the SATT (company/team) Smart

Advertising Transaction Token (SATT) project smart contract code audit

requirements on 2020/09/21.

Project Name：Smart Advertising Transaction Token (SATT)

Smart Contract Address：

https://etherscan.io/address/0xdf49c9f599a0a9049d97cff34d0c30e468987

389#code

Audit Number：20200912

Audit Date：20200921

Audit Category and Result:

(Other unknown security vulnerabilities and Ethereum design flaws are not included in

this audit responsibility)

Audit Result：PASS

Auditor：John Wick Security Lab

(Disclaimer: The John Wick Security Lab issues this report based on the facts that have

occurred or existed before the issuance of this report, and assumes corresponding

responsibility in this regard. For the facts that occur or exist after the issuance of

this report, the John Wick Security Lab cannot judge the security status of its smart

contracts and does not assume any responsibility for it. The safety audit analysis and

other contents of this report are based on the relevant materials and documents provided

by the information provider to the John Wick Security Lab when the report is issued

(referred to as the information provided). The John Wick Security Lab assumes that there

is no missing, falsified, deleted, or concealed information provided. If the information

Class SubClass Result(Pass/Not Pass)

Code

programming

Integer overflow Pass

Race condition Not Pass

Logical flaw Pass

Denial of service Pass

Function parameter check Not Pass

Random number generation Pass

Compiler version Pass

Hardcoded address Pass

ERC20/ERC223 standard Not Pass

Code specification Not Pass

Special

service

Business risk Pass

Contract owner privileges Pass

"short address" attack Pass

"Fake recharge" attack Pass

GAS optimization - Pass

Automated fuzzing - Pass

https://etherscan.io/address/0xdf49c9f599a0a9049d97cff34d0c30e468987389#code
https://etherscan.io/address/0xdf49c9f599a0a9049d97cff34d0c30e468987389#code

 Smart Contract Audit Report

 2

provided is missing, falsified, deleted, concealed, or the information provider's

response is inconsistent with the actual situation, the John Wick Security Lab shall

not bear any responsibility for the resulting loss and adverse effects.)

Audit Details：

//JohnWick: 47L

The decimal point of this contract is 18, which is consistent with the

decimal point of Ethereum’s base currency Ether(ETH), in line with the

recommended practice.

//JohnWick: [Low Risk] 20L

This contract does not use the SafeMath library to avoid potential integer

overflow issues, which is not in line with the recommended practice.

//JohnWick: [Low Risk] 20L

The function transferOwnership(address payable newOwner) does not check

if newOwner is address(0). If the owner is set to address(0) by mistake,

the contract will be out of control.

//JohnWick: [Low Risk] 48L

uint256 public constant totalSupply = 20000000000000000000000000000;

This way of writing is not conducive to improving the code readability

of this smart contract, the code should be written as:

uint256 public constant totalSupply = 20000000000 * (10 ** uint256(decimals));

//JohnWick: [Low Risk] 103L

require(balanceOf[_to] + _value > balanceOf[_to]);

This will cause an exception to be thrown if the _value is 0, which need

to change > to >=.

//JohnWick: [Low Risk] 118L

The function approve(address _spender, uint256 _value) has a race

condition problem.

We recommend adding the following check code after 119L:

require(_value == 0 || allowance[msg.sender][_spender] == 0);

Or use the increaseApproval or decreaseApproval functions of the

OpenZeppelin open source framework to achieve atomic increase or decrease

allowance[msg.sender][_spender] to avoid this problem.

 Smart Contract Audit Report

 3

//JohnWick: [Low Risk] 81L

Function transfer (address to, uint256 value, bytes memory data) does

not comply with the ERC223 standard. According to the standard, _data

can be empty, but the implementation of this contract is that if _data

is empty, the transfer transaction will not be triggered.

//JohnWick: 125L

transferToken (address token,address to,uint256 val) public onlyOwner

function allows the contract owner to return the ERC20 token which was

mistakenly transferred to this contract to the to address, which avoids

the loss caused by the misoperation and conforms to the recommended

practice.

Note: The line number of the code involved in the audit details is based

on the verified contract source code uploaded by the project party at

etherscan.io, which is also displayed as a backup in the Smart Contract

Source Code section of this report.

Smart Contract Source Code:

/**

 *Submitted for verification at Etherscan.io on 2019-03-19

*/

pragma solidity ^0.5.6;

contract owned {

 address payable public owner;

 constructor () public {

 owner = msg.sender;

 }

 modifier onlyOwner {

 require(msg.sender == owner);

 _;

 }

 function transferOwnership(address payable newOwner) onlyOwner public {

 owner = newOwner;

 }

 Smart Contract Audit Report

 4

 function() external payable {

 }

 function withdraw() onlyOwner public {

 owner.transfer(address(this).balance);

 }

}

interface ERC20 {

 function transfer(address receiver, uint256 value) external returns (bool ok);

}

interface ERC223Receiver {

 function tokenFallback(address _from, uint _value, bytes32 _data) external ;

}

contract SaTT is owned,ERC20 {

 uint8 public constant decimals = 18;

 uint256 public constant totalSupply = 20000000000000000000000000000; // 20

billions and 18 decimals

 string public constant symbol = "SATT";

 string public constant name = "Smart Advertising Transaction Token";

 mapping (address => uint256) public balanceOf;

 mapping (address => mapping (address => uint256)) public allowance;

 event Transfer(address indexed from, address indexed to, uint256 value);

 event Approval(address indexed tokenOwner, address indexed spender, uint256

tokens);

 constructor () public {

 balanceOf[msg.sender] = totalSupply;

 }

 Smart Contract Audit Report

 5

 function isContract(address _addr) internal view returns (bool is_contract)

{

 bytes32 hash;

 assembly {

 //retrieve the size of the code on target address, this needs assembly

 hash := extcodehash(_addr)

 }

 return (hash !=

0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 && hash !=

bytes32(0));

 }

 function transfer(address to, uint256 value) public returns (bool success)

{

 _transfer(msg.sender, to, value);

 return true;

 }

 function transfer(address to, uint256 value,bytes memory data) public

returns (bool success) {

 if((data[0])!= 0) {

 _transfer(msg.sender, to, value);

 }

 return true;

 }

 function transferFrom(address _from, address _to, uint256 _value) public

returns (bool success) {

 require(_value <= allowance[_from][msg.sender]); // Check

allowance

 allowance[_from][msg.sender] -= _value;

 _transfer(_from, _to, _value);

 return true;

 }

 function _transfer(address _from, address _to, uint256 _value) internal {

 // Prevent transfer to 0x0 address. Use burn() instead

 require(_to != address(0x0));

 // Check if the sender has enough

 require(balanceOf[_from] >= _value);

 // Check for overflows

 Smart Contract Audit Report

 6

 require(balanceOf[_to] + _value > balanceOf[_to]);

 // Subtract from the sender

 balanceOf[_from] -= _value;

 // Add the same to the recipient

 balanceOf[_to] += _value;

 if(isContract(_to))

 {

 ERC223Receiver receiver = ERC223Receiver(_to);

 receiver.tokenFallback(msg.sender, _value, bytes32(0));

 }

 emit Transfer(_from, _to, _value);

 }

 function approve(address _spender, uint256 _value) public

 returns (bool success) {

 allowance[msg.sender][_spender] = _value;

 emit Approval(msg.sender, _spender, _value);

 return true;

 }

 function transferToken (address token,address to,uint256 val) public

onlyOwner {

 ERC20 erc20 = ERC20(token);

 erc20.transfer(to,val);

 }

 function tokenFallback(address _from, uint _value, bytes memory _data)

pure public {

 }

}

